The Cercospora nicotianae gene encoding dual O-methyltransferase and FAD-dependent monooxygenase domains mediates cercosporin toxin biosynthesis.

نویسندگان

  • Katherine L Dekkers
  • Bang-Jau You
  • Vivek S Gowda
  • Hui-Ling Liao
  • Miin-Huey Lee
  • Huey-Jiunn Bau
  • Peter P Ueng
  • Kuang-Ren Chung
چکیده

Cercosporin, a photo-activated, non-host-selective phytotoxin produced by many species of the plant pathogenic fungus Cercospora, causes peroxidation of plant cell membranes by generating reactive oxygen species and is an important virulence determinant. Here we report a new gene, CTB3 that is involved in cercosporin biosynthesis in Cercospora nicotianae. CTB3 is adjacent to a previously identified CTB1 encoding a polyketide synthase which is also required for cercosporin production. CTB3 contains a putative O-methyltransferase domain in the N-terminus and a putative flavin adenine dinucleotide (FAD)-dependent monooxygenase domain in the C-terminus. The N-terminal amino acid sequence also is similar to that of the transcription enhancer AFLS (formerly AFLJ) involved in aflatoxin biosynthesis. Expression of CTB3 was differentially regulated by light, medium, nitrogen and carbon sources and pH. Disruption of the N- or C-terminus of CTB3 yielded mutants that failed to accumulate the CTB3 transcript and cercosporin. The Deltactb3 disruptants produced a yellow pigment that is not toxic to tobacco suspension cells. Production of cercosporin in a Deltactb3 null mutant was fully restored when transformed with a functional CTB3 clone or when paired with a Deltactb1-null mutant (defective in polyketide synthase) by cross feeding of the biosynthetic intermediates. Pathogenicity assays using detached tobacco leaves revealed that the Deltactb3 disruptants drastically reduced lesion formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional characterization of three genes encoding putative oxidoreductases required for cercosporin toxin biosynthesis in the fungus Cercospora nicotianae.

Cercosporin is a non-host-selective, photoactivated polyketide toxin produced by many phytopathogenic Cercospora species, which plays a crucial role during pathogenesis on host plants. Upon illumination, cercosporin converts oxygen molecules to toxic superoxide and singlet oxygen that damage various cellular components and induce lipid peroxidation and electrolyte leakage. Three genes (CTB5, CT...

متن کامل

The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin biosynthesis and fungal virulence of Cercospora nicotianae.

Cercosporin is a light-activated, non-host-selective toxin produced by many Cercospora fungal species. In this study, a polyketide synthase gene (CTB1) was functionally identified and molecularly characterized to play a key role in cercosporin biosynthesis by Cercospora nicotianae. We also provide conclusive evidence to confirm the crucial role of cercosporin in fungal pathogenesis. CTB1 encode...

متن کامل

Characterization of Cercospora nicotianae Hypothetical Proteins in Cercosporin Resistance

The photoactivated toxin, cercosporin, produced by Cercospora species, plays an important role in pathogenesis of this fungus to host plants. Cercosporin has almost universal toxicity to cells due to its production of reactive oxygen species including singlet oxygen. For that reason, Cercospora species, which are highly resistant to their own toxin, are good candidates to identify genes for res...

متن کامل

Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae.

Cercosporin is a non-host-selective, perylenequinone toxin produced by many phytopathogenic Cercospora species. The involvement of Ca(2+)/calmodulin (CaM) signaling in cercosporin biosynthesis was investigated by using pharmacological inhibitors. The results suggest that maintaining endogenous Ca(2+) homeostasis is required for cercosporin biosynthesis in Cercospora nicotianae. The addition of ...

متن کامل

The CRG1 gene required for resistance to the singlet oxygen-generating cercosporin toxin in Cercospora nicotianae encodes a putative fungal transcription factor.

The Cercospora nicotianae CRG1 gene is involved in cellular resistance to the perylenequinone toxin, cercosporin, that generates highly toxic singlet oxygen upon exposure to light. The entire open reading frame (ORF) of CRG1 was isolated and sequenced. The gene contains an ORF of 1950bp including a 65-bp intron. The predicted 650 amino acid CRG1 protein contains a Cys(6)Zn(2) binuclear cluster ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Fungal genetics and biology : FG & B

دوره 44 5  شماره 

صفحات  -

تاریخ انتشار 2007